DATABASE MANAGEMENT SYSTEM

Data and Information

Historically, the term data referred to facts concerning objects and events that could be recorded and
stored on computer media. For example, in a salesperson’s database, the data would include facts such
as customer name, address, and telephone number. This type of data is called structured data.

An expanded definition of data that includes structured and unstructured types is “a stored
representation of objects and events that have meaning and importance in the user’s environment.”

The terms data and information are closely related and in fact are often used interchangeably. However,
it is useful to distinguish between data and information. We define information as data that have been
processed in such a way that the knowledge of the person who uses the data is increased.

What is Data Processing?

Data Processing is the term generally used to describe what was done by large mainframe computers
from the late 1940's until the early 1980's (and which continues to be done in most large organizations
to a greater or lesser extent even today): large volumes of raw transaction data fed into programs that
update a master file, with fixed-format reports written to paper.

What is Data Management System?

The term Data Management Systems refers to an expansion of the Data Processing technique, where
the raw data, previously copied manually from paper to punched cards, and later into data-entry
terminals, is now fed into the system from a variety of sources, including ATMs, EFT, and direct
customer entry through the Internet. The master file concept has been largely displaced by database
management systems, and static reporting replaced or augmented by ad-hoc reporting and direct
inquiry, including downloading of data by customers. The ubiquity of the Internet and the Personal
Computer have been the driving force in the transformation of Data Processing to the more global
concept of Data Management Systems.

What is a file-processing/file-based system? What are the limitations of a file-processing system that
led to the development of the database system?

In the file-processing or file based system, the data are stored in the form of files, and a number of
application programs are written by programmers to add, modify, delete and retrieve data to and from
appropriate files. New application programs are written as and when needed by the organization.

Limitations of File based system:-

1. Data Redundancy and Inconsistency: (Redundancy) For example, the address and telephone
number of a particular customer may appear in a file that consists of savings-account records
and in a file that consists of checking-account records. This redundancy leads to higher storage
and access cost.

(Inconsistency) For example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.

2. Difficulty in accessing data: Conventional file-processing environments do not allow needed
data to be retrieved in a convenient and efficient manner. More responsive data-retrieval
systems are required for general use.

3. Data Isolation: Because data are scattered in various files, and files may be in different formats,
writing new application programs to retrieve the appropriate data is difficult.

4. Integrity problem: For example, the balance of a bank account may never fall below a
prescribed amount (say X25). Developers enforce these constraints in the system by adding
appropriate code in the various application programs. However, when new constraints are
added, it is difficult to change the programs to enforce them.

5. Atomicity Problems: Consider a program to transfer 50 from account ‘A’ to account ‘B’. If a
system failure occurs during the execution of the program, it is possible that the X50 was
removed from account ‘A’ but not credited to account ‘B’, resulting in an inconsistent database
state. Clearly, it is essential to database consistency that either both the credit & debit occur, or
that neither occur. That is the funds transfer must be atomic — it must happen in its entirety or
not at all.

6. Concurrent-access Anomalies: Consider bank account A, containing X500. If two customers
withdraw funds (say X50 & X100 respectively) from account A at about the same time, the result
of the concurrent executions may leave the account in an incorrect state. Suppose that the
programs executing on behalf of each withdrawal read the old balance, reduce that value by the
amount being withdrawn, and write the result back. If the two programs run concurrently, they
may both read the value X500, and write back X450 & 400 respectively. Depending on which
one writes the value last, the account may contain X450 or X400, rather than the correct value
of X350.

7. Security Problems: In a banking system, payroll personnel need to see only that part of the
database that has information about the various bank employees. They do not need access to
information about customer accounts. But, since application programs are added to the system
in an ad-hoc manner, enforcing such security constraints is difficult.

What is database?
A database can be defined as a collection of related data from which users can efficiently retrieve the

desired information. A database can be anything from a simple collection of roll numbers, names,
addresses and phone numbers of students to a complex collection of sound, images and even video or
film clippings. Though databases are generally computerized, instances of non-computerized databases
from everyday life can be cited in abundance. A dictionary, a phone book, a collection of recipes and a
TV guide are examples of non-computerized databases. The examples of computerized databases
include customer files, employee rosters, books catalog, equipment inventories and sales transactions.

Databases are organized by fields, records and files. These are described briefly as follows:

e Fields: It is the smallest unit of the data that has meaning to its users and is also called data item or data
element. Name, Address and Telephone number are examples of fields. These are represented in the
database by a value.

e Records: A record is a collection of logically related fields and each field is possessing a fixed number of
bytes and is of fixed data type. Alternatively, we can say a record is one complete set of fields and each
field have some value. The complete information about a particular phone number in the database

represents a record. Records are of two types fixed length records and variable length records.
-5-

e Files: Afile is a collection of related records. Generally, all the records in a file are of same size and record
type but it is not always true. The records in a file may be of fixed length or variable length depending
upon the size of the records contained in a file. The telephone directory containing records about the
different telephone holders is an example of file.

Database Approach:

Database is a shared collection of logically related data (and a description of this data), designed to meet
the information need of an organization.

To describe the term logically we use 1. Entity, 2. Attribute, 3. Relationship

1. Entity: an entity is a ‘thing’ or ‘object’ in the real world that is distinguishable from other
objects. For example, each person is an entity and bank accounts can be considered as entities.

2. Attributes: entities are described in a database by a set of attributes. For example, the attribute
account-number & balance may describe one particular account in a bank, and they form
attributes of the account entity set. Similarly, attributes customer-name, customer-street,
address, customer-city may describe a customer entity.

3. Relationship: a relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that s/he has.

What is Database Management System?

A Database Management System (DBMS) is an integrated set of programs used to create and maintain a
database. The main objective of a DBMS is to provide a convenient and effective method of defining,
storing, retrieving and manipulating the data contained in the database.

What is DBMS catalog?

To provide a high degree of data independence, the definition or the description of the database
structure (structure of each file, the type and storage format of each data item) and various constraints
on the data are stored separately in a table. This table is known as the DBMS catalog. The information
contained in the catalog is called the metadata (data about data).

Describe Metadata.

Metadata are data that describe the properties or characteristics of end-user data and the context of
that data. Some of the properties that are typically described include data names, definitions, length (or
size), and allowable values. Metadata describing data context include the source of the data, where the
data are stored, ownership (or stewardship), and usage. Although it may seem circular, many people
think of metadata as “data about data.”

There are three main types of metadata:

1. Descriptive Metadata: It describes a resource for purpose such as discovery and identification.
In a traditional library cataloging that is form of metadata, title, abstract, author and keywords
are examples of meta data.

2. Structural Metadata: It describes how compound objects are put together. The example is how
pages are ordered to form chapters.

3. Administrative Meta data: It provides information to help manage a resource, such as when
and how it was created, file type and other technical information, and who can access it. There
are several subsets of data.

Instances & schemas:

Database change over time as information is inserted and deleted. The collection of information stored
in the database at a particular moment is called an instance of the database. The overall design of the
database is called the database schema. Schemas are changed infrequently, if at all.

This concept can be understood by analogy to a program written in a programming language. A
database schema corresponds to the variable declarations (along with associated type definitions) in a
program. Each variable has a particular value at a given instant. The values of the variables in a program
at a point in time correspond to an instance of a database schema.

Components of the DBMS environment:
A database system involves four major components: data, hardware, software and users.
Users can be divided into 4 groups who can use the DBMS.

Data & Database Administrator
Database Designer
Application Programmers

P W

End-users

1. Data Administrator’s is to decide what data should be stored in the database in the first place and to
establish policies for maintaining and dealing with that data once it has been stored. An example of such
a policy might be one that dictates who can perform what operations on what data in what
circumstances — in other words, a data security policy.

Data administrator is a manager, not a technician. The technical person responsible for implementing
the data administrator’s decisions is the database administrator (DBA). The DBA, unlike the data
administrator, is thus an IT professional.

2. Database Designer

a) Logical Database Designer: is concerned with identifying the data, the relationship between the data
and the constraints on the data that is to be stored in the database.

b) Physical Database Designer: must have a thorough and complete understanding of the organization’s
data and its business rules.

3. Application Programmers are responsible for writing database application programs in some
programming language such as COBOL, C++, Java or some higher-level ‘fourth generation’ language.
Such programs access the database by issuing the appropriate request - typically an SQL statement to
the DBMS.

4. End users or database users are those who interact with the database in order to query and update

the database and generate reports. Database users are classified into the following categories:

Naive users: The users who query and update the database by invoking some already written
application programs. For example, the owner of the bookstore enters the details of various
books in the database by invoking an appropriate application program.

Sophisticated users: The users, such as a business analyst, scientist, etc., who are familiar with
the facilities provided by a DBMS interact with the system without writing any application
programs. Such users use database query language to retrieve information from the database to
meet their complicated requirements.

Specialized users: The users who write specialized database programs that are different from
traditional data-processing applications such as banking and payroll management use simple
data types. Specialized users write applications such as computer-aided design systems,
knowledge-base and expert systems that store data having complex data types.

Advantages of DBMS:

The main advantage of DBMS is centralized data management where the data are stored at a centralized
location and are shared among multiple users. The centralized nature of the database system provides
several advantages, which overcome the limitations of the conventional file-processing system.

These advantages are as follows:

Controlled data redundancy: During database design, various files are integrated, and each
logical data item is stored at a central location. This eliminates replicating the data item in
different files, and ensures consistency and saves the storage space.

Enforcing data integrity: In the database approach, enforcing data integrity is much easier.
Various integrity constraints are identified by the database designer during the database design.
Data sharing: The data stored in the database can be shared among multiple users or
application programs. Due to shared data, it is possible to satisfy the data requirements of the
new applications without having to create any additional data or with minimal modification.
Ease of application development: The application programmer develops the application
programs according to the needs of the users. The other issues like concurrent access, security,
data integrity, etc. are handled by the DBMS itself. This makes application development an
easier task.

Data security: The DBMS ensures that the only means of access to the database is through an
authorized channel. To ensure security, a DBMS provides security tools such as user codes and
passwords.

Multiple user interfaces: DBMS provides different types of interfaces such as query languages,
application program interfaces and graphical user interfaces (GUI) that include forms-style and
menu-driven interfaces.

Backup and recovery: The DBMS provides a backup and recovery subsystem, which is
responsible for recovery from hardware and software failures.

In addition to centralized data management, DBMS also has some other advantages as follows:

Program-data independence: The independence between the programs and the data is known
as program-data independence. It allows changing the structure of the database without making
any changes in the application programs that use the database.

Data abstraction: The property of DBMS that allows program-data independence is known as
data abstraction. Data abstraction allows the database system to provide an abstract view of the
data to its users without giving the physical storage and implementation details.

Supports multiple views of the data: A database can be accessed by many users and each of
them may have a different perspective or view of the data. A database system provides a facility
to define different views of the data for different users. A view is a subset of the database that
contains virtual data derived from the database files but it does not exist in physical form.

Disadvantages of DBMS

The various cost and risk factors involved in implementing a database system are:

High cost: Installing a new database system may require investment in hardware and software.
The DBMS requires more main memory and disk storage. Moreover, DBMS is quite expensive.
Therefore, a company needs to consider the overhead cost of implementing a new database
system.

Training new personnel: When an organization plans to adopt a database system, it may need
to recruit or hire a specialized data administration group, which can coordinate with different
user groups for designing views, establishing recovery procedures and fine tuning the data
structures to meet the requirements of the organization. Hiring such professionals is expensive.
Explicit backup and recovery: A shared corporate database must be accurate and available at all
times. Therefore, a system using on-line updating requires explicit backup and recovery
procedures.

System failure: When a computer system containing the database fails, all users have to wait
until the system is functional again. Moreover, if DBMS or the application program fails, a
permanent damage may occur to the database.

Function of DBMS

L 0N Uk WNRE

Data storage, retrieval and update.

A user-accessible catalog.

Concurrency Control Service.
Transaction supports.

Recovery services.

Authorization services.

Support for data communication.
Integrity services.

Services to promote data independence.

10. Utility services.

3k 3k sk 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k sk ok %k 3k ok 3k 3k sk %k 3k 3k 3k 3k 5k 5k %k 3k 3k 3k sk sk %k sk sk 3k 3k sk ok 3k 3k 5k 3k 5k sk 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k ok sk 3k ok 3k 3k 5k ok sk sk ok 3k sk ok %k sk sk sk sk sk sk ok

What is the architecture of DBMS?

The architecture is divided into three levels to separate the users, application and the physical

database, known as the internal, conceptual and external level.

Why the separation is desired?

For the system to be usable, it must retrieve data efficiently. The need for efficiency has led
designers to use complex data structures to represent data in the database. Since many
database system users are not computer trained, developers hide the complexity from users
through several levels of abstraction, to simplify user’s interactions with the system

Each user should be able to access the same data, but in different customized view of the
data. Each user should be able to change the way he or she views the data and this changes
should not be affected other user.

User should not have to deal directly with the physical database storage details such as
indexing and hashing

The DBA should be able to change the database storage structure without affecting the user
view.

The internal architecture of the database should be unaffected by changes to physical
aspects of storage, such as the change over to a new storage device.

The DBA should be able to change the conceptual or global structure of database without
affecting all users.

User 1 User 2 User 3
External View 1 View 2 View 3
Level
Conceptual
Level Conceptual Schema
Internal
Level Internal Schema

Physical & Data
organization

Database

-10-

External View 7

Staff No | EName | Lname AGE Salary Staff No. LName Batch No.

Conceptual View‘l

Staff No. | EName LName DoB Salary Batch
MNe.

Internal view < struct Staff {

int staffNo.;

int BatchMo.;

char Ename[15];
char Lname[10];
int dob;

float salary;

struct Staff *next; }

Description of three level architecture:

Physical level:-

e The lowest level abstraction describes how the data are actually stored. The physical level
describes complex low-level data structures in detail.

e Covers the physical implementation of the database to achieve optimal runtime
performance and storage space utilization.

e Covers data structure and file organization used to store data on storage device.

e Interfaces with 0.S. access methods to place the data on the storage devices, build the
indexes, retrieve data and so on.

Logicl level or Conceptual level:-

e The next higher level of abstraction describes what data are stored in the database, and
what relationships exist among those data.
e This level represents all entities, attributes and their relationships.
e The constraints on the data.
e Semantic information about the data.
-11-

Security and integrity information about the data.

View level or External level:-

Mappings:

The highest level of abstraction describes only parts of the entire database. Even though the
logical level uses simple structures, complexity remains because of the variety of
information stored in a large database. Many users of the database system do not need all
this information; instead, they need to access only a part of the database. The view level of
abstraction exists to simplify their interaction with the system. The system may provide
many views for the same database.

In addition to the three levels, the architecture involves certain mappings — one conceptual to internal

mapping and several external to conceptual mappings, in general

The conceptual/internal mapping defines the correspondence between the conceptual view
and the stored database. It specifies how conceptual records and fields are represented at
the internal level. If the structure of the stored database is changed — i.e., if a change is
made to the storage structure definition — then the conceptual/internal mapping must be
changed accordingly, so that the conceptual schema can remain invariant

An external/conceptual mapping defines the correspondence between a particular external
view and the conceptual view.

Data Independence:

Data independence is the ability to change the schema at one level of the database system without
having to change the schema at the other levels. Data independence is of two types, namely, logical

data independence and physical data independence.

e Logical data independence: It is the ability to change the conceptual schema without affecting
the external schemas or application programs. The conceptual schema may be changed due to
change in constraints or addition of new data items or removal of existing data items, etc. from

the database. The separation of the external level from the conceptual level enables the users to

make changes at the conceptual level without affecting the external level or the application

programs.

e Physical data independence: It is the ability to change the internal schema without affecting the
conceptual or external schema. An internal schema may be changed due to several reasons such

as for creating additional access structure, changing the storage structure, etc. The separation of

internal schema from the conceptual schema facilitates physical data independence.

Logical data independence is more difficult to achieve than the physical data independence because the
application programs are always dependent on the logical structure of the database. Data independence
is an important characteristic of DBMS as it allows changing the structure of the database without
making any changes in the application programs that use the database.

-12 -

In a database system, it would be extremely undesirable to allow applications to be data-dependent, for

at least the following two reasons:

1.

Different applications will require different views of the same data. For example, there are two
applications, A and B, each owing a private file that includes the field “customer balance”.
Suppose, however, that application A stores that field in decimal, whereas application B stores it
in Binary. It will still be possible to integrate the two files, and to eliminate the redundancy,
provided the DBMS is ready and able to perform all necessary conversions between the stored
representation chosen and the form in which each application wishes to see it. For example, if it
is decided to store the field in decimal, then every access by B will require a conversion to or
from binary.

The DBA must have the freedom to change the physical representation or access technique in
response to changing requirements, without having to modify existing applications. For
example, new kinds of data might be added to the database; new standards might be adopted;
application priorities might change; new storage devices might become available; and so on.

Database language:

4GL (4™ Generation Language):-

- No consensus about what constitute a 4GL.

- ltis essentially a shorthand programming language.

- Compared with 3GL, which is procedural, a 4GL is non-procedural, the user defined. Explains
what is to be done not how.

- Expected to rely largely on much higher level components known as fourth Generation
tools.

- The user is not expected to define the steps of a program needs to perform a task but
instead define parameters for the tools that used to generate an application program.

- Canimprove productivity by a factor by ten.

4GL encompass

- Presentation language.

- Specialty language.

- Application generators.

- Very high level language that used to generate application code.

Data Models

Underlying the structure of a database is the data model, a collection of conceptual tools for describing
data, data relationships, data semantics and consistency constraints.

Data model is consisted of three components:

i)

i)

A structural part:- consisting of a set of rules according to which database can be
constructed.
A manipulation part:- Defining the types of operations that are allowed on the data.

-13-

iii) Possibly a set of integrity rules, which ensures that the database is accurate.
Data models are of three categories:

i) Object based data model
ii) Record based data model
iii) Physical data model

e Object based data models use conceptual tools such as entities, attributes and relationships.
e Record based data models
- Consists of a number of fixed format records of possibly different types.
- Each record type defines a fixed number of field, each typically of a fixed length.
- Three principal types of record based data models:
o Relational Data Model
o Network Data Model
o Hierarchical Data Model

Relational Data Model: -

o Based on the concept of mathematical relations.
o Entities and relationships are represented as tables each of which has a number of
columns with a unique name.

Branch

B.No. Street Area City Pincode | TelephoneNo. | FaxNo.
Staff

5.No. FName | Lname | Addr. T.No. Position | Sex DoB Salary | B.No.
Network Data Model:-

Data is represented as a collection of records.

Relationships are represented by sets.

Records are organized as generalized graph structure where records appearing as
nodes and sets as edges in the graph.

Hierarchical Data Model:-

o Itis arestricted type of network model.

o Datais represented as collections of records.
-14 -

Relationships are represented by sets.
Allows a node to have only one parent.
Can be represented by a tree graph, with records appearing as nodes and sets as
edges.
e Physical Data Model

o Describes how data is stored in the computer representing information such as
record structures, records ordering and access paths.

o Not as many physical models as logical data model, example — unifying model and
the frame memory.

e Conceptual Modeling:
- Conceptual schema is the heart of the database.
- It supports all the external view and is in turn supported by the internal schema.
- Should be completed and accurate representation of the data requirements of the
enterprise.

Database Language

To provide various facilities to different types of users, a DBMS normally provides one or more
specialized programming languages called Database (or DBMS) Languages. The DBMS mainly provides
two database languages, namely, Data Definition Language (DDL) and Data Manipulation Language
(DML), Data Control Language (DCL) and Transaction Control Language (TCL).

1) Data Definition Language: We specify a database schema by a set of definitions expressed by a
special language called a data-definition language (DDL).
For instance, the following statement in the SQL defines the account table:

CREATE TABLE ACCOUNT
(account_number char(10),

Balance integer)

Execution of the above DDL statement creates the account table shown below.

account_number balance
10012 5000
20023 3700
23011 2000

The account table

2) Data Manipulation Language (DML):
Data manipulation is
- The retrieval of information stored in the database.
- The insertion of new information into the database.
- The deletion of information from the database.

-15-

- The modification of information stored in the database.

A data-manipulation language (DML) is a language that enables users to access or manipulate
data as organized by the appropriate data model. There are basically two types:

e Procedural DMLs require a user to specify what data are needed and how to get
those data.

e Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify
what data are needed without specifying how to get those data.

sk sk sk ok ok ok 3k 3k 3k sk ok ok sk ok ok ok ok 3k 3k sk sk sk ok 3k sk sk ok sk sk ok ok sk ok ok sk sk ok ok 3k 3k sk sk ok ok ok sk 3k sk ok ok ok 3k sk 3k ok 3k ok %k 3k 3k 5k 3k 3k 3k ok 3k 3k sk ok ok ok ok ok ok ok sk sk ok sk ok ok

Briefly describe conceptual data modeling.

The overall database design and implementation process starts with requirements gathering and
specifications. Once the requirements of the user have been specified, the next step is to construct an
abstract or conceptual model of a database based on the requirements of the user. This phase is known
as conceptual modeling or semantic modeling. Conceptual modeling is an important phase in designing
a successful database. It represents various pieces of data and their relationships at a very high level of
abstraction. It mainly focuses on what data are required and how they should be organized rather than
what operations are to be performed on the data. The model is independent of any hardware (physical
storage) and software (DBMS) constraints and hence, can be modified easily according to the changing
needs of the user. The conceptual model can be represented using two major approaches, namely,
Entity—Relationship Modeling and Object Modeling.

What is an E-R model? What are its advantages?

The Entity—Relationship Model is the most popular conceptual model used for designing a database. It
was originally proposed by Dr Peter Chen in 1976 as a way to unify the network and relational database
views. The E-R model views the real world as a set of basic objects (known as entities), their
characteristics (known as attributes) and associations among these objects (known as relationships). The
entities, attributes and relationships are the basic constructs of an E-R model.

The E-R model has several advantages as listed below:

e It is simple and easy to understand and, thus, can be used as an effective communication tool
between the database designer and the end user.

e It captures the real-world data requirements in a simple, meaningful and logical way.

e It can be easily mapped to the relational model. The basic constructs, that is, the entities and
attributes of the E-R model can be easily transformed into relations (or tables) and columns (or
fields) in a relational model.

e It can be used as a design plan and can be implemented in any database management software.

What do you mean by entity?

-16 -

An entity is a distinguishable object that has an independent existence in the real world. It includes all
those ‘things’ of an organization about which the data are collected. For example, each book, publisher
and author in an Online Book database is an entity. An entity can exist either physically or conceptually.

e Tangible entity: If an entity has a physical existence, it is termed as tangible or concrete entity.
For example, a book, an employee, a place or a part.

e Non-tangible: If an entity has a conceptual existence, it is termed as non-tangible or abstract
entity. For example, an event, a job title or a customer account.

Entity type vs Entity set.

A set or a collection of entities that share the same attributes but different values is known as an entity
type. For example, the set of all publishers who publish books can be defined as the entity type
PUBLISHER. A specific occurrence of an entity type is called its instance. For example, the publisher Hills
Publications is the instance of the entity type PUBLISHER. An entity set is a collection of all instances of a
particular entity type in the database at any point of time. Each entity is referred to by its name and
attribute values. An entity type describes the schema (intension) for the entity set that shares the same
structure. The entity set, on the other hand, is called the extension of the entity type.

Types of attributes.
The attributes of an entity are classified into the following categories:

¢ Identifying and descriptive attributes: The attribute that is used to uniquely identify an instance
of an entity is known as an identifying attribute or simply an identifier. For example, the
attribute P_ID of the entity type PUBLISHER is an identifying attribute, as two publishers cannot
have the same publisher ID. A descriptive attribute or simply a descriptor, on the other hand,
describes a non-unique characteristic of an entity instance. For example, the attributes Price and
Page_count are the descriptive attributes as two books can have the same price and number of
pages.

e Simple and composite attributes: The attributes that are indivisible are known as simple (or
atomic) attributes. For example, the attributes Book _title, Price, Year, Page_count and Category
of the entity type BOOK are simple attributes as they cannot be further divided into smaller
subparts. On the other hand, composite attributes can be divided into smaller subparts. For
example, the attribute Address can be further divided into House_number, Street, City, State
and Zip_code.

e Stored and derived attributes: In some cases, two or more attribute values are related in such a
way that the value of one attribute can be determined from the value of other attributes or
related entities. Consider an entity type PERSON and its attributes Date_of birth and Age. The
value of the attribute Age can be determined from the current date and the value of
Date_of_birth. Thus, the attribute Age is known as a derived attribute and the attribute
Date_of_birth is known as a stored attribute.

e Single-valued and multi-valued attributes: The attributes that can have only one value for a
given entity are called the single-valued attributes. For example, the attribute Book title is a
single-valued attribute as one book can have only one title. The attributes that can have

multiple values for a given entity are called multi-valued attributes. For example, the attributes
-17 -

Email_ID and Phone of the entity type PUBLISHER are multi-valued attributes, as a publisher can
have zero, one or more e-mail IDs and phone numbers.

e Complex attributes: The attributes that are formed by arbitrarily nesting the composite and
multivalued attributes are called complex attributes. This is represented by grouping the
components of a composite attribute between parentheses ‘() and by displaying the multi-
valued attributes between braces ‘{}, and attributes separated by commas. For example, a
publisher can have offices at different places, each with different addresses and each office

having multiple phones.

name address

IO AR

First-name Middle-name Last-name street city state postal-code

AN

street-number street-name apartment-no

Composite attributes

{Address_phone ({Phone}, Address (House_number, Street, City, State, Zip_code))}

-
.

complex attribute multivalued attribute composite attribute

Domain

For each attribute, there is a set of permitted values, called the domain, or value set of that attribute.
The domain of attribute customer-name might be the set of all text strings of a certain length.

Key attribute: Key attributes are those attributes which can identify an entity uniquely in an entity set.

Relationship: a relationship is an association among several entities.

-18-

EMP Works DEPT

for

Degree of relationship

The degree of a relationship is the number of entities associated with the relationship. The n-ary
relationship is the general form for degree n. Special cases are the binary and ternary where the

degree is 2, and 3, respectively.

Binary relationships: the association between two entities is the most common type in the real
world. A recursive binary relationship occurs when an entity is related to itself. An example might be

"some employees are married to other employees".

A ternary relationship involves three entities and is used when a binary relationship is inadequate.
Many modeling approaches recognize only binary relationships. Ternary or n-ary relationships are
decomposed into two or more binary relationships.

Constraints

Relationship types usually have certain constraints that limit the possible combinations of entities
participating in relationship instances.

These constraints are determined from mini-world situation that the relationship represents.

Mapping Constraints

There are certain constraints in E-R model. Data in the database must follow the constraints. Constraints
act as rules to which the contents of database must conform. There are two types of mapping
constraints : (a) Mapping cardinalities, (b) Participation constraints.

Mapping Cardinalities and Cardinality Ratio:

Cardinality ratios express the number of entities to which another entity can be associated via a
relationship set.

For a binary relationship set R between entity sets A and B, the mapping cardinality must be one of the
following.

i) One to one:- An entity in A is associated with at most one entity in B, and an entity in B is
associated with at most one entity in A.

-19-

ii) One to many:- an entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.

iii) Many to one:- An entity in A is associated with at most one entity in B. An entity in B,
however, can be associated with any number of entities in A.

iv) Many to many:- An entity in A is associated with any number of entities in b, and an entity in
B is associated with any number of entities in A.

i) One to one ii) One to many

=R

dz

a3

ay

iii) Many to one iv) Many to many

Consider the borrower relationship set. If in a particular bank, a loan can belong to only one customer
and a customer can have several loans, then the relationship set from customer to loan is one-to-many.
If a loan can belong to several customers (joint venture), the relationship set is many-to-many.

Participation constraints:
-20-

The participation of an entity set E in a relationship set R is said to be total if every entity in E
participates in at least one relationship in R. If only some entities in E participate in relationship R is said
to be partial.

For example, we expect every loan entity is related to at least one customer through the borrower
relationship. Therefore the participation of loan in the relationship set borrower is total. In contrast, one
individual customer of a bank may or may not take a loan. Here, only some of the customer entities are
related to loan entity set through the borrower relationship, therefore the participation of customer in
the borrower relationship set is partial.

Structural constraints:
It defines as the cardinality ratio and participation constraints are taken together of a relationship type.
Weak and strong entity set

An entity set may not have sufficient attributes to form a primary key. Such an entity set is termed as
weak entity set. An entity set that has a primary key is termed as a strong entity set.

Keys

A key is an attribute or set of attributes that is used to identify data in entity sets. The attributes which are used as
key are known as key attributes. Rest of all are known as Non-key attributes.

Types of Keys

Super Key: A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation.

Employee
Reg. No 1D Name Salary Dept-I1D
51D 1 Mohan 1500 10
A25 2 Sohan 2000 30
33Z 3 Vikas 3000 20
Z4X 4 Madhu 1000 10
A5C 5 Sonal 5000 20

For example, in entity set Employee, superkeys are
(a) (ID, Name, Salary, Reg. No.)
(b) (ID, Name, Reg. No.)
(c) (ID) etc.

Candidate Key: We are often interested in superkeys for which no proper subset is a superkey. Such
minimal superkeys are called candidate keys. Ex. ID and Reg. No. are candidate keys.

-21-

Primary Key: We shall use the term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a relation. Consider the classroom
relation:

classroom (building, room-number, capacity)

Here the primary key consists of two attributes, building and room-number, which are underlined to
indicate they are part of the primary key. Neither attribute by itself can uniquely identify a classroom,
although together they uniquely identify a classroom.

Foreign Key: A foreign key is an attribute in any entity set which is also a Primary Key in any other entity
set.

For example, Dept_ID: This is an attribute in entity set Employee and also a primary key in entityset
Department. Thus, it is a foreign key in Employee.

Secondary Key: An attribute or set of attributes which doesn’t identify data uniquely but identifies a
group of data is known as secondary key. For example, Name, Salary and Department No. are all
secondary keys.

Alternate Key: All the candidate keys other than Primary Key are known as Alternate Keys. For example,
If you take ID as Primary Key, then, Reg. No. is an alternate key in the Employee relation.

Composite Key: A key that consists of more than one

Department attribute to uniquely identify rows (also known as records &
Dept-1D Dept-Name tuples) in a table is called composite key.
10 Sales
20 Marketing Note: A key (whether primary, candidate, or super) is a
30 Development property of the entire relation, rather than of the individual
tuples. Any two individual tuples in the relation are

prohibited from having the same value on the key attributes
at the same time. The designation of a key represents a constraint in the real-world enterprise being
modeled. Thus, primary keys are also referred to as primary key constraints.

Entity-Relationship (ER) Model and Diagram

An entity-relationship model (E-R model) is a detailed, logical representation of the data for an
organization or for a business area. The E-R model is expressed in terms of entities in the business
environment, the relationships (or associations) among those entities, and the attributes (or properties)
of both the entities and their relationships. An E-R model is normally expressed as an entity-relationship
diagram (E-R diagram, or ERD), which is a graphical representation of an E-R model.

-22 -

S.No. | Name of Symbol Symbol Meaning
B Rectangle Entity Set (Strong)
2. Double Rectangle Entity Set (Weak)
3. Ellipse O Attribute
4. Diamond Q Relationship Set
5. Double Diamond @ Identifying Relationship Type
6. Double Ellipses © Multi-valued attributes
7. Dashed Ellipses — Derived attributes
8. Ellipse with line inside it Key attribute
9. Ellipse joined with Composite attributes
other ellipses
10. Double lines €, | o— Total Participation
11. Single line | Es | 0 Partial Participation
12. Triangle W Specialization or Generalization

ER-Diagram Symbols

-23-

Loan Mumber @

| M I Loan M
Customer Borrower Loan Payment Payment

E-R diagram with customer, loan and payment sets

Extended E-R features

As the complexity of data increased in the late 1980s, it became more and more difficult to use the
traditional ER Model for database modeling. Hence some improvements or enhancements were made
to the existing ER Model to make it able to handle the complex applications better.

Hence, as part of the Enhanced ER Model, along with other improvements, three new concepts were
added to the existing ER Model, they were:

1. Generalization

2. Specialization

3. Aggregation

Let's understand what they are, and why were they added to the existing ER Model.

Generalization

Generalization is a bottom-up approach in which two lower level entities combine to form a higher level
entity. In generalization, the higher level entity can also combine with other lower level entities to make
further higher level entity.

It's more like Super class and Subclass system, but the only difference is the approach, which is bottom-
up. Hence, entities are combined to form a more generalized entity, in other words, sub classes are
combined to form a super-class. For example, Saving and Current account types entities can be
generalized and an entity with name Account can be created, which covers both.

-24-

Account

_ Bottom Up

15

A Approach
Saving Current

Example of Generalization

Specialization
Specialization is opposite to Generalization. It is a top-down approach in which one higher level entity
can be broken down into two lower level entity. In specialization, a higher level entity may not have any

lower-level entity sets, it's possible.

Student

is

Top Down

E}(—Sjruden*‘ Current Student

Example of Specialization

Aggregation

Aggregation is a process when relation between two entities is treated as a single entity.

-25-

Center < offer

COU rse

enguire

Visitor

Example of Aggregation

In the diagram above, the relationship between Center and Course together, is acting as an Entity,
which is in relationship with another entity Visitor. Now in real world, if a Visitor or a Student visits a
Coaching Center, he/she will never enquire about the center only or just about the course, rather

he/she will ask enquire about both.

ER Diagram of Library Management System

E-R Diagram for Library Management System

Book_id @
Cwe D (naver)
.\E Books H—— Published by Publisher @

Available
Expiry_date
Brrowe by . M

@ @ Memb_date

-26-

Problem 1: Design an E-R diagram for a COMPANY database as per the requirements given below. Make appropriate
assumptions to complete the specification.

a)

b)

c)
d)

The company stores the information about the currently working employees. The information includes
employee number, name, gender, salary, and date of birth, date of joining, address and phone number. Each
employee works for a department on a particular project for a particular number of hours.

The information about departments includes department number and department name. Each department
controls some projects currently running in the company. Also each department is managed by a particular
employee who becomes the manager for that department. This employee also supervises all the other
employees in that department.

The project information includes project number, project name and its description.

An employee can work for only one department; however, a department can have any number of employees.
A department is managed by only one manager and a manager can manage only one department. A
department can control any number of projects; however, one project can be handled by only one
department. Any number of employees can work on any number of projects.

Specify the key attributes of each entity type, role names and mapping cardinalities.

B D-\TE OF_ Jor\mﬁ s

(PRI JT_NO
e

CPRIT_NAME O | B

\ / @ESCR]_{:FIO};—

=i —
\\\,// sran‘r D%TE_F

Controlled
Project

Supervicese
3 Drept
Managed

T M |
SLIPERVISES [

ontrelling
D&panmem

S .
\E_DEPI Na ‘MH_“_“) Y _DE?T 'qo]

Describe the advantages of E-R model

The major advantages of E-R model are as follows:

1.

Straightforward relation representation: The relation representation of the database model
using E-R diagram are relatively more straightforward than other models.

Mapping with relational model: It can be easily mapped onto the relational model. The E-R
diagrams used in the E-R model can easily be transformed into relational tables. The entities and
attributes of E-R model can easily be transformed into relations (tables) and columns (fields) in a
relational model.

Communication tool: It is very simple and easy to understand with a minimum of training
efforts required. Therefore, the model can be used by the database designer to communicate
the design to the end user.

Design tool: E-R model can also be used as a design plan by the database developer to
implement a data model in specific database management software.

Easy conversion to other models: E-R diagrams can be easily converted to a network or
hierarchical data model.

Graphical representation: E-R model provides graphical and diagrammatical representation of
various entities, their attributes and relationships between entities.

Easy to modify: Modifications to E-R diagram at later stage is relatively easier than in other
models.

-27 -

Describe the limitation of E-R Model

Limitation of E-R Model: E-R model cannot express relationships between relationships. In other words
E-R model is not capable to express relationship set between relationship sets. This limitation can be
overcome by using EER model.

What do you understand by the term relation?

A relation is used to represent information about any entity and its relationship with other entities in
the form of attributes (or columns) and tuples (or rows). It comprises a relation schema and a relation
instance.

What is a relational database?

A relational database is a collection of relations (or two-dimensional tables) having distinct names. It is a
persistent storage mechanism that conforms to the relational model.

Features of Relational database model:

e Datais presented as a collection of relations

e Each relation is depicted as a table

e Columns are attributes

e Rows ("tuples") represent entities

e Every table has a set of attributes that taken together as a "key" (technically, a "superkey")
uniquely identifies each entity

Advantages of Relational Model
The major advantages of Relational Model are as follows:

(/) Simplicity : The Relational database model is very easy and simple to design and implement at
the logical level. The different tables in the database can be designed using appropriate attributes
and data values very easily. All the relations are designed in a tabular manner, which helps the user
to concentrate on the logical view of the database rather than complex internal details of how data
is stored.

(ii) Flexible : The Relational databse provide flexibility that allows changes to database structure to
be easily accommodated.

(iif) Data Independence : Because data resides in tables, the structure of database can be changed
without having to change any applications that were based on the structure. If you are using non
relational database you probably have to modify the application that will access this information by
including pointers to the new data. But with relational database the information is immediately
accessible because it is automatically related to other data by virtue of its position in the table.

(iv) Structural Independence : Relational database is only concerned with data and not with the
structures, which improves performance. Hence processing time and storage space is comparatively

-28-

large in relational database but the user is not required to know the details of the structure design.
The structural flexibility of a relational database allows combinations of data to be retrieved that
were never anticipated at the time the database was initially designed.

(v) Query Capability : It makes possible a high level query language i.e., SQL (Structure Query
Language) which avoids complex database navigation. In this model the queries are based on logical
relationships and processing those queries does not require predefined access paths among the
data i.e., pointers.

(vi) Matured Technology : Relational model is useful for representing most of the real world objects
and relationship between them. Relationship implementation is very easy through the use of a key.

(vii) Ability to easily take advantages of new hardware technology which make things easy for the

users.
Disadvantages of Relational Model
The major disadvantages of relational data moderate are as follows:

(/) The relational database use a simple mapping of logical tables to physical structures. Indexing and
hashing techniques are used for access to table data and for certain constraint processing. This
severally limits the performance.

(i) The most significant limitation of relational model is its limited ability to deal with binary large
objects such as images, spreadsheets, e-mail messages, documents etc.

(iii) Since this model has the ability to easily take advantage of new hardware technology to run
smoothly, so large hardware overheads are incurred. This make it a costly affair.

(iv) Mapping objects to relational database can be a difficult skill to learn.

(v) Data Integrity is difficult to ensure with relational databases because no single application has
control over the data so it is very difficult to ensure that all applications are operating under
business principles. The individual database will also create problems like data duplication, data
inconsistency and so on.

What are the Codd’s Rules?

Dr. Edgar F. CODD proposed a set of rules that are necessary for a system to qualify as a Relational
Database Management System. The CODD’s rules are as follows:

Rule 0: Foundation rule. A relational database management system must manage the database entirely
through its relational capabilities.

Rule 1: Information Rule. The data stored in a database, may it be user data or metadata, must be a
value of some table cell. Everything in a database must be stored in a table format.

-29-

Rule 2: Guaranteed Access Rule. Every single data element (value) is guaranteed to be accessible
logically with a combination of table-name, primary-key (row value), and attribute-name (column value).
No other means, such as pointers, can be used to access data.

Rule 3: Systematic Treatment of NULL Values. The NULL values in a database must be given a
systematic and uniform treatment. This is a very important rule because a NULL can be interpreted as

one the following: data is missing, data is not known, or data is not applicable.

Rule 4: Active Online Catalog. The structure description of the entire database must be stored in an
online catalog, known as data dictionary, which can be accessed by authorized users. Users can use the
same query language to access the catalog which they use to access the database itself.

Rule 5: Comprehensive Data Sub-Language Rule. A database can only be accessed using a language
having linear syntax that supports data definition, data manipulation, and transaction management
operations. This language can be used directly or by means of some application. If the database allows
access to data without any help of this language, then it is considered as a violation.

Rule 6: View Updating Rule. All the views of a database, which can theoretically be updated, must also
be updatable by the system.

Rule 7: High-Level Insert, Update, and Delete Rule. A database must support high-level insertion,
updation, and deletion. This must not be limited to a single row, that is, it must also support union,
intersection and minus operations to yield sets of data records.

Rule 8: Physical Data Independence. The data stored in a database must be independent of the
applications that access the database. Any change in the physical structure of a database must not have
any impact on how the data is being accessed by external applications.

Rule 9: Logical Data Independence. The logical data in a database must be independent of its user’s
view (application). Any change in logical data must not affect the applications using it. For example, if
two tables are merged or one is split into two different tables, there should be no impact or change on
the user application. This is one of the most difficult rule to apply.

Rule 10: Integrity Independence. A database must be independent of the application that uses it. All its
integrity constraints can be independently modified without the need of any change in the application.
This rule makes a database independent of the front-end application and its interface.

Rule 11: Distribution Independence. The end-user must not be able to see that the data is distributed
over various locations. Users should always get the impression that the data is located at one site only.
This rule has been regarded as the foundation of distributed database systems.

Rule 12: Non-Subversion Rule. If a system has an interface that provides access to low-level records,
then the interface must not be able to subvert the system and bypass security and integrity constraints.

-30-

DBMS vs RDBMS

S.Mo. DBMS RDBMS
1. DBMS is a generalized software RDBMS is a type of DBMS that depends
for managing and manipulating the upon the mathematical concepts of
databases. relation.
2. DBMS’s organize data by using data files | RDBMS’s organize data by using tables,
with records and fields. tuples and attributes.
3. Several files cannot be stored in a single [Several tables can be stored in a single
file. table known as table pools.
4. Mavigation is not so simple. MNawvigation is much simpler.
5. It is not the case here. It creates new database tables by using
basic operators.
6. Physical and logical data independence It provides physical and logical data
depends upon the structure of database. |independence by using mappings.
i Data handling, transaction processing RDBMS have more powerful data
and other features are less powerful than | handling, transaction processing and other
RDBMS. features to enhance speed, security and
reliabiligy.

Integrity Constraints

The relational data model includes several types of constraints, or rules limiting acceptable values and
actions, whose purpose is to facilitate maintaining the accuracy and integrity of data in the database.
The major types of integrity constraints are domain constraints, entity integrity, and referential integrity.

e Domain Constraints: All of the values that appear in a column of a relation must be from the
same domain. A domain is the set of values that may be assigned to an attribute. A domain
definition usually consists of the following components: domain name, meaning, data type, size
(or length), and allowable values or allowable range (if applicable).

e Entity Integrity: The entity integrity rule is designed to ensure that every relation has a primary
key and that the data values for that primary key are all valid. In particular, it guarantees that
every primary key attribute is non-null.

e Referential Integrity: In the relational data model, associations between tables are defined
through the use of foreign keys. A referential integrity constraint is a rule that maintains
consistency among the rows of two relations. The rule states that if there is a foreign key in one
relation, either each foreign key value must match a primary key value in another relation or the
foreign key value must be null.

-31-

The Relational Algebra

The relational algebra consists of a set of operations that take one or two relations as input and produce
a new relation as their result. Some of these operations, such as the select, project, and rename
operations, are called unary operations because they operate on one relation. The other operations,
such as union, Cartesian product, and set difference, operate on pairs of relations and are, therefore,
called binary operations.

Although the relational algebra operations form the basis for the widely used SQL query language,
database systems do not allow users to write queries in relational algebra.

‘ D | name dept_name ‘ salary |
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
08345 | Kim Elec. Eng. | 30000

The instructor relation.

The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the lowercase Greek letter
sigma (o) to denote selection. The predicate appears as a subscript to 0. The argument relation is in
parentheses after the o. Predicate is prepositional logic formula which may use connectors like and, or,

and not. These terms may use relational operators like: =, #, 2, <, >, <.

To select those tuples of the instructor relation where the instructor is in the “Physics” department,
we write:

Odept _name ="Physics" (ins tructor)

Output would be as follows:

ID name | deptname salary |
22222 | Einstein | Physics 95000
33456 | Gold Physics g7000

-32-

To find the instructors in Physics with a salary greater than 90,000, we write:
Gdept _name ="Physics"A salary >90000 (instructor)
The Project Operation

Suppose we want to list all instructors’ ID, name, and salary, but we do not care about the dept name.
The project operation allows us to produce this relation. The project operation is a unary operation that
returns its argument relation, with certain attributes left out. Since a relation is a set, any duplicate rows
are eliminated. Projection is denoted by the uppercase Greek letter pi ().

We writethe query to produce such a list as:

[1D, name, salary(instructor)

Output
[D | name | salary |
10101 | Srinivasan | 65000
12121 | Wu 90000

15151 | Mozart 40000
22222 | Einstein 95000
32343 | El Said 60000

33456 | Gold 87000
45565 | Katz 75000
58583 | Califieri 62000
76543 | Singh 80000
76766 | Crick 72000
83821 | Brandt 92000
98345 | Kim 80000

Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important. Consider the more
complicated query “Find the names of all instructors in the Physics department.” We write:

[Mname (Odeptname = “Physics’ (instructor))

In general, since the result of a relational-algebra operation is of the same type(relation) as its inputs,
relational-algebra operations can be composed together into a relational-algebra expression.

The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (X), allows us to combine information from any
two relations. We write the Cartesian product of relations r1 and r2 as r1 X r2.

-33-

For example, following expression Yields a relation, which shows all the books and articles written by
Rabindranath.

[Tauthor = 'Rabindranath’'(Books X Articles)
The Join Operation

The join operation allows us to combine a selection and a Cartesian product into a single operation.
Suppose we want to find the information about all instructors together with the course_id of all courses
they have taught. We need the information in both the instructor relation and the teaches relation to
compute the required result.

Thus, it can equivalently be written as,

instructor ™ instructor.ID = teaches. ID teaches

Set Operations

Consider the following relations

Empioyee Student
EID MName Salary SID MName Fees
1E Jehn 10,000 15 Smith 1,000
2E Ramesh 5,000 25 Vijay 950
3E Smith 5,000 35 Gaurav 2,000
4E Jack 6,000 45 Nile 1,500
S5E Mile 15,000 55 John 950

The union operation : The union operation is a binary operation that is used to find union of relations.
Here relations are considered as sets. So, duplicate values are eliminated. It is denoted by (U).

Conditions for union operation : There are two necessary conditions for union operation.
(/) Both the relations have same number of attributes.
(ii) Data types of their corresponding attributes must be same.
Two relations are said to be union compatible if they follow the above two conditions.
Ex. If you want to find the names of all employees and names of all students together then the query is

Tvame (Employee) U TTyame (Student)

Output of the query is
-34-

Mame

John
Ramesh
Smith
Jack
Nile
Vijay

Gaurav

Set intersection operation : Set intersection is used to find common tuples between two relations. It is
denoted by (N). If you want to find all the employees from Relation Employee those are also students.

Rules of set union operations are also applicable here. Then the query, is = Name (Employee) N
7t Name (Student)

Tname (EMployee) N Tyame (Student)

Output of the query is

John
Smith
Mile

Set-difference operation : Set-difference operation is a binary operation which is used to find tuples that
are present in one relation but not in other relation. It is denoted by (—). It removes the common tuples
of two relations and produce a new relation having rest of the tupels of first relation.

Ex. If you want the names of those employees that are not students, then the query, is t Name
(Employee) — 7 Name (Student)

TName (Employee) — Ty ame (Student)

Output of the query is

MName

Ramesh

Jack

-35-

Rename Operation

The results of relational algebra are also relations but without any name. The rename operation allows
us to rename the output relation. ‘rename’ operation is denoted with small Greek letter rho (p).

Example: p,(E) returns the relational algebra expression E under the name x. If a relational algebra
expression E (which is a relation) has the arity k, then

Px(Ay, A,...., AY(E)
returns the expression E under the name x, and with the attribute names A4, A,...., A..
Outer join

Outer Join is an extension of natural join operations. It deals with the missing information caused by
natural join operation. There are three types of outer joins.

Left outer join : It is used to take all tuples of relation that are on the left side whether they are
matching with tuples of right side relation or not. It is denoted by ().

(Employee >« Student) gives

EID SID Mame Salary Fees
1E 35 John 10,000 950
2E NULL Ramesh 5,000 NULL
3E 15 Smith 8,000 1,000
4E NULL Jack 6,000 NULL
SE 45 Nile 15,000 1,500

Right outer join : It is used to take all tuples of relation that are on the right side whether they are
matching with tuples of left side relation or not. It is denoted by (><t).

(Employee < Student) gives

EID 51D Name Salary Fees
3E 15 Smith 8,000 1,000
MNULL 25 Vijay NULL 930
NULL 35 Gaurav NULL 2,000
SE 45 Nile 15,000 1,500
1E 55 John 10,000 950

Full outer join : It is used to take all tuples from left and right relation whether they match with each
other or did not match. It is denoted by (3<).

-36-

(Employee >< Student) gives

EID SID Name Salary Fees
1E 55 John 10,000 50
2E MULL Ramesh 5,000 MNULL
3E 15 Smith 8,000 1,000
4E MULL Jack 6,000 MNULL
5 45 Nile 15,000 1,500
NULL 25 Vijay MNULL 1,000
NULL 3s Gaurav MNULL 2,000

The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary
relation variables. The assignment operation, denoted by <—, works like assignment in a programming
language.

Decomposition

Let U be a relation schema. A set of relation schemas {R1, R2, ..., Rn}is a decompositionof U if and only
ifU=R1 UR2 U ...URn

Lossless-Join Decomposition

A decomposition {R, T} of U is a lossless-join decomposition (with respect to a set of constraints) if the
constraints imply that u = r>t for all possible instances of R, T, and U.

The decomposition is said to be lossy otherwise.
It is always the case for any decomposition {R, T} of U that u € r p¢ t.

Prime and Non-Prime Attributes

For a given relation R= {A1,A2,A3,...........,An}, an attribute A is a prime attribute if A is a part of any
candidate key of R otherwise A is a non-prime attribute.

Normalization

e Normalization is a process to eliminate data redundancy to get rid of three anomalies:
o Insert anomaly
o Update anomaly

-37-

o Delete anomaly
e Normalization basically decomposes an inconsistent relation into multiple ones.
e Benefits: data integrity, scalability and efficient storage of data.

Normalization is the process of modifying a relation schema based on its FDs and primary keys so that it
conforms to certain rules called normal forms. It is conducted by evaluating a relation schema to check
whether it satisfies particular rules and if not, then decomposing the schema into a set of smaller
relation schemas that do not violate those rules. Normalization can be considered as fundamental to the
modelling and design of a relational database, the main purpose of which is to eliminate data
redundancy and avoid data update anomalies. A relation is said to be in a particular normal form if it
satisfies certain specified constraints. Each of the normal forms is stricter than its predecessors. The
normal forms are used to ensure that various types of anomalies and inconsistencies are removed from
the database.

Normal Forms

e There are basically five normal forms exists.

e Edgar F. Codd introduced the first three normal forms i.e. INF, 2NF and 3NF in 1972.
e In 1974 Boyce & E.F. Codd introduced BCNF(Boyce-Codd Normal Form)

e Astronger version of 3NF

e Beside this we also have 4NF, 5NF and DKNF(Domain Key Normalization Form)

e In practical 3NF is considered to achieve the sufficient amount of consistency.

What are the benefits of normalization?
The benefits of normalisation include

(a) Normalisation produces smaller tables with smaller rows, this means more rows per page and
hence less logical I/0.

(b) Searching, sorting, and creating indexes are faster, since tables are narrower, and more rows fit
on a data page.

(c) The normalisation produces more tables by splitting the original tables. Thus there can be more
clustered indexes and hence there is more flexibility in tuning the queries.

(d) Index searching is generally faster as indexes tend to be narrower and shorter.

(e) The more tables allow better use of segments to control physical placement of data.

(f) There are fewer indexes per table and hence data modification commands are faster.

(g) There are small number of null values and less redundant data. This makes the database more
compact.

(h) Data modification anomalies are reduced.

(i) Normalization is conceptually cleaner and easier to maintain and change as the needs change.

-38-

What is functional dependency? Give examples.

e |t basically describes relationship between attributes.
e Suppose in a relation R, X and Y are the non-empty set of attributes. T1 and T2 are any two
tuples where T1.X=T2.Xand T1.Y =T2.Y, then XY i.e.
o XdeterminesY or
o Yis functionally determined by X
o Leftside of “>" is known as determinant.

ISBN Price | Page count | R _ID City Rating
001-987-760-9 25 800 A002 Atlanta 6
001-987-760-9 25 800 A008 Detroit 7
001-354.921-1 22 200 AQ06 Albany 7
002-678-980-4 35 860 A003 Loz Angeles 5
002-678-980-4 35 860 A001 New York 2
002-678-9504 35 860 A005 Juneau 7
004-765-409-5 26 550 AD03 Los Angeles 4
004-765-359-3 40 650 A007 Austin 3
003-456-433-6 30 500 A010 | Virginia Beach 5
001-987-650-5 35 450 A009 Seattle 8
002-673-880-2 25 400 A006 Albany 4
003-456-533-8 30 500 A004 Seattle 9

BOOK_REVIEW_DETAIL

Consider the relation schema BOOK_REVIEW_DETAIL(ISBN, Price, Page_count, R_ID, City, Rating) that
represents review details of the books by the reviewers. The primary key of this relation is the
combination of ISBN and R_ID. Note that the same book can be reviewed by different reviewers and the
same reviewer can review different books. An instance of this relation schema is shown in Figure 6.3. In
this relation, the attribute Price is functionally dependent on the attribute ISBN (ISBN > Price), as tuples
having the same value for the ISBN have the same value for the Price. For example, the tuples having
ISBN 001-987-760-9 have the same value 25 for Price. Similarly, the tuples having ISBN 002-678-980-4
have the same value 35 for Price. Other FDs such as ISBN = Page_count, Page_count - Price, R_ID -
City are also satisfied. In addition, one more functional dependency {ISBN, R_ID}->Rating is also
satisfied. That is, the attribute Rating is functionally dependent on the composite attribute {ISBN, R_ID}.

Trivial and Non-Trivial FD

-39-

e IfX>YandY is subset of X then X->Y is trivial FD.
e Example: ab->b
e If XY and XnY=@ then it is called non-trivial FD.

Define the closure of a set of FDs.

For a given set F of functional dependencies, some other dependencies also hold. That is, some
functional dependencies are implied by F. For example, consider a relation schema R (A, B, C), such that
both the FDs A->B and B->C hold for R. Then, FD A->C also holds on R as C is dependent on A
transitively, via B. Thus, it can be said that FD A->C is implied. The set of all FDs that are implied by a
given set F of FDs is called the closure of F, denoted as F+. For a given F (if it is small), F+ can be
computed directly. However, if F is large, then some inference rules for functional dependencies are
used to compute F+.

Armstrong’s Axioms

The following three rules called inference axioms or Armstrong’s Axioms can be used to find all the FDs
logically implied by a set of FDs. Let X, Y, Z, and W be subsets of attributes of a relation R. The following
axioms hold:

1. Reflexivity. If Y is a subset of X, then X — Y. This also implies that X — X always holds.
Functional dependencies of this type are called trivial functional dependencies.

2. Augmentation. If X — Y holds and Z is a set of attributes, then ZX — ZY.
Transitivity. If X — Y holds and Y — Z holds, then X — Z holds.

These rules are Sound and Complete. They are sound because they do not generate any invalid
functional dependencies. They are complete because they allow us to generate F+ (closure of F) from
the given set of functional dependencies F. It is very cumbersome and complex to use the Armstrong’s
Axioms directly for the computation of F+. So some more axioms are added to simplify the process of
computation of F+. These additional axioms can be proved correct by using the Armstrong’s Axioms.
The additional axioms are

4. Additivity or Union. If X = Y and X — Z, then X — YZ holds.
5. Projectivity or Decomposition. If X — YZ holds, then X — Y and X — Z also holds
6. Pseudotransitivity. If X — Y and ZY — W holds, then XZ — W holds.

These additional axioms are also Sound and Complete.

Example. Let R = (A, B, C, D) and F be the set of functional dependencies for R given by {A—B, A—C,
BC—D}. Prove A—D.

Sol. Given set of functional dependencies for a relation R is {A—B, A—C, BC—D}

By using Armstrong Axioms, named projectivity, we can show that A—BC (as A—B, A—C)

-40 -

Since BC—D, so by transitivity rule, A—BC and BC—D means A—D. Hence proved.

Covers

Consider two sets of FD’s F1 and F2 over a relation scheme R. The two sets F1 and F2 are equivalent if
the closure of F1 is equal to the closure of F2 i.e. F1" = F2*. The set F1 covers

F2 and F2 covers F1 iff F1 and F2 are equivalent.

Importance of Cover: Sometimes closure of a set of FD’s F+ can be very large and difficult to compute. In
that case the cover is used. It acts as a representative of the closure of F.

Example. Consider two sets of FDs, Fand G, F={A—>B,B—>C, AC—>D}and G={A—> B, B—>C, A—> D}
Are F and G equivalent?

Sol. To determine their equivalence, we need to prove that F* = G*. However, since computing F" or G' is
computationally expensive, there is another method. Two sets of FDs, F and G are equivalent, if all FDs
in F can be inferred from the set of FDs in G and vice versa.

To see if all FDs in F are inferred by G, compute attribute closure for attributes on the
LHS of FDs in F using FDs in G (Checking whether F covers G):

A+ using G = ABCD; A—>A; A—>B; A—>C; A—> D;

B+ usingG=BC; B—>B; B—>C;

AC+ using G = ABCD; AC—> A; AC—>B; AC—>C; AC—>D;

Thus, all FDs in F can be inferred using FDs in G.

To see if all FDs in G are inferred by F, compute attribute closure for attributes on the LHS of FDs in G
using FDs in F (Checking whether G covers F):

A+ using F=ABCD; A—>A;A—>B;A—>C,A—>D;

B+ using F=BC; B—>B; B—>C;

Since all FDs in F can be obtained from G and vice versa, hence F and G are equivalent.

First Normal Form (1NF)
A relation is said to be in 1NF if,
e Every attribute value is atomic (single).
e There is no repeating groups exists.
e Each row is uniquely identifiable.
e Attribute names are unique as well.

The Student_details relation (shown in Figure (a)) contains non-atomic values; hence, it is unnormalized.
However, it can be normalized into 1NF by creating one tuple for each value in multi-valued attributes

as shown in Figure b.

-41-

Student_details|

Std_id Std_name | Course_id | Course_title
1 A Cco1 History
co2 Geography
co3 English
2 B Co1 History
co4 Economics
C05 Chemistry

(a) Unnormalised since Course_id is not atomic

Student_details:

Std_id Std_name Course_id Course_title
1 A " co1 History

1 A co2 Geography
1 A ' co3 English

2 B col History

3 B ' co4 ' Economics
B B Co5 Chemistry

(b) Normalised version of Student_details

Partial Dependency:

When there is a functional dependence in which the determinant is only part of the primary key, then
there is a partial dependency. For example if (A, B) -> (C, D) and B -> C and (A, B) is the primary key, then
the functional dependence B -> C is a partial dependency.

Second Normal Form (2NF)
A relation is said to be in 2NF if,

e The relation “R"“is in 1NF.

e There is no partial dependency exists in the relation “R".

In the following table partial dependencies exists. That is why it is in INF but not in 2NF.

-42 -

Product_details:

Cust_id Cust_name Prod_id Prod_name
101 Ravi PO1 . Pencil
102 . Dinesh . P02 - Eraser

Prime attributes: Cust_id, Prod_id

FD: Cust_id ->Cust_name, Prod_id ->Prod_name

To achieve the desired 2NF we have to decompose it into two relations named as Customer and Product
as follows:

Customer:
Cust_id | Cust_name Prod_id
101 Ravi ' PO1
| 102 ' Dinesh | P02
Product:
Prod_id | Prod_name
P01 ' Pencil
P02 | Eraser

What is transitive dependency?

An attribute Y of a relation schema R is said to be transitively dependent on attribute X (X-Y), if there is
a set of attributes A that is neither a candidate key nor a subset of any key of R and both XA and A->Y
hold. For example, the dependency ISBN->Price is transitive through Page _count in relation schema
BOOK (see the following Figure). This is because both the dependencies ISBN->Page_count and
Page count—>Price hold and Page_count is neither a candidate key nor a subset of the candidate key of
BOOK.

-43-

Price
k

ISBN Page_count

P_ID

(a) FD Diagram for BOOK

Third Normal Form
A relation “R” is in 3NF if,

e The relation “R™is in 2NF.

e For non-trivial FD X-Y:
o Xis asuper key or candidate key.
o Yisa prime attribute.

e There is no transitive dependency exists.

For example, the following relation Employee is in 2NF but not in 3NF.

Employee:

Emp_id | Emp_name City Zip
EO1 Ravi Kolkata 700001
E02 ' Dinesh ' Mumbai ' 400001

Transitive dependency: Emp_id|-> Zip -> City

Also, Zip -> City where ‘Zip’ is not a super key and ‘City’ is not a prime attribute

We can achieve the normalization at 3NF if decompose the relation as follows:

-44 -

Employee_data:
Emp_id Emp_name Zip
EO1 Ravi 700001
E02 ' Dinesh ' 400001
Zip_details:
Zip City
700001 Kolkata

| 400001 ' Mumbai

Define the Boyce-Codd normal form. Give an example also.

The Boyce-Codd normal form was proposed to deal with the relations having two or more candidate
keys that are composite and that overlap. Definition: A relation schema R is in a Boyce-Codd normal
form (BCNF) if, for every FD X->A in F, where X is the subset of the attributes of R, and A is an attribute
of R, one of the following statements holds: X->Y is a trivial FD, thatis, Y € X. X is a super key.

In simple terms, it can be stated as: A relation schema R is in BCNF if and only if every non-trivial FD has
a candidate key as its determinant.

For example, consider a relation schema BOOK(ISBN, Book _title, Price, Page_ count) with two candidate
keys, namely, ISBN and Book_title. The FD diagram for this relation schema is shown in the following
Figure.

3 Page count

AN

As shown in Figure 6.10, there are two determinants, namely ISBN and Book_title and both of them are
candidate keys. Thus, this relation schema is in BCNF.

- 45 -

Why is BCNF considered simpler as well as stronger than 3NF?

BCNF is the simpler form of 3NF as it makes explicit reference to neither the first and second normal
forms nor to the concept of transitive dependence. In addition, it is stronger than 3NF as every relation
that is in BCNF is also in 3NF but the vice versa is not necessarily true. For example, the relation schema
BOOK (described in 8), which is in BCNF, does not include any transitive dependency and thus, is in 3NF
as well.

Now, consider another relation schema BOOK_RATING(ISBN, Book_title, R_ID, Rating). Assuming that
book titles are also unique, the relation has two candidate keys (ISBN, R_ID) and (Book _title, R_ID). This
relation schema is not in BCNF since it contains two determinants, namely ISBN and Book_title, which
determine each other and neither of them is a candidate key. However, this relation is in 3NF.

What is multi-valued dependency? What is the difference between functional dependency and multi-
valued dependency?

Multi-valued dependencies (MVDs) are the generalization of functional dependencies. Definition: In a
relation schema R, an attribute Y is said to be multi-dependent on attribute X(X-> -Y) if and only if for a
particular value of X, the set of values of Y is completely determined by the value of X alone and is
independent of the values of Z where X, Y and Z are the subsets of the attributes of R. X-> =Y is read as
Y is multi-dependent on X or X multi-determines Y. Let us understand the notion of multi-valued
dependencies with the help of an example. Consider the relation BOOK_AUTHOR_DETAIL as shown in
the figure.

In this relation, each ISBN has a well-defined set of corresponding A_ID. Similarly, for a particular A_ID, a
well-defined set of Phone exists. In addition, book is independent of the phone numbers of authors, due
to which there is a lot of redundancy in this relation. Thus, the multi-valued dependencies that hold in
this relation can be represented as follows:

ISBN->->A_ID

A_ID->—->Phone

- 46 -

ISBN A_ID Phone

002-675-980-4 | AO002 37604

L]

002-678-930-4 | AO00S 765490

004-765-409-5 | A00S 765490

ISBN A_ID Phone

001-987-760-9 | A00l 923673

001-987-760-9 | AOOl 923743

001-987-760-9 | AO03 | 419456

001-987-760-9 | AO003 419562

001-354-921-1 A005 678654

001-354-921-1 | A005 | 678655

001-354-921-1 | A005 | 678657

BOOK_AUTHOR_DETAIL

Functional dependencies prevent the existence of certain tuples in a relation. For example, if an FD X->Y
holds in R, then any r(R) cannot have two tuples having the same X value but different Y values. On the
contrary, multi-valued dependencies do not rule out the presence of those tuples, rather, they require
the presence of other tuples of a certain form in the relation.

Fourth Normal Form (4NF)
A relation is in fourth normal form (4NF) if it is in BCNF and contains no multi-valued dependencies.
Fifth Normal Form (5NF)

A table is in fifth normal form (5NF) or Project-Join Normal Form (PJNF) if it is in 4NF and it cannot have
a lossless decomposition into any number of smaller tables.

Domain-Key Normal Form (DKNF) or Sixth Normal Form (6NF)

-47 -

A table is in sixth normal form (6NF) or Domain-Key normal form (DKNF) if it is in 5NF and if all
constraints and dependencies that should hold on the relation can be enforced simply by enforcing the
domain constraints and the key constraints specified on the relation.

The domain-key normal form (DKNF) is a theoretical statement of how relationships are formed
between tables.

What is SQL? What are the two major categories of SQL commands? Explain them.

SQL stands for structured query language. It is a language that can be used for retrieval and
management of data stored in relational database. It is a non-procedural language as it specifies what is
to be retrieved rather than how to retrieve it. It can be used for defining the structure of data, modifying
data in the database and specifying the security constraints. The two major categories of SQL commands
are Data Definition Language (DDL) and Data Manipulation Language (DML). DDL provides commands
that can be used to create, modify and delete database objects. DML provides commands that can be
used to access and manipulate the data, that is, to retrieve, insert, delete and update data in a database.

What is data type? What are the various data types supported by standard SQL?

Data type identifies the type of data to be stored in an attribute of a relation and also specifies
associated operations for handling the data. The common data types supported by standard SQL are as
follows:

e NUMERIC(p, s): used to represent data as floating-point number. The number can have p
significant digits (including sign) and s number of the p digits can be present on the right of
decimal point. For example, the data type specified as NUMERIC(5, 2)indicates that the value of
an attribute can be of form 332.32.

e INT or INTEGER: used to represent data as a number without a decimal point.

e SMALLINT: used to represent data as a number without a decimal point. It is a subset of the
INTEGER; so the default size is usually smaller than INT.

e CHAR(n) or CHARACTER(n): used to represent data as a fixed-length string of characters of size
n. In case of fixed-length strings, a shorter string is padded with blank characters to the right.
For example, if the value ABC is to be stored for an attribute with data type CHAR(8), the string
is padded with five blanks to the right.

e VARCHAR(n) or CHARACTER VARYING: used to represent data as a variable length string of
characters of maximum size n. In case of variable length string, a shorter string is not padded
with blank characters.

e DATE and TIME: used to represent data as date or time. The DATE data type has three
components, namely year, month and day in the form YYYY-MM-DD. The TIME data type also
has three components, namely hours, minutes and seconds in the form HH:MM:SS.

e BOOLEAN: used to represent the third value unknown, in addition to true and false values,
because of the presence of null values in SQL.

e TIMESTAMP: used to represent data consisting of both date and time. The TIMESTAMP data
type has six components, year, month, day, hour, minute and second in the form YYYY-MM-
DDHH: MM:SS[.sF], where F is the fractional part of the second value.

-48 -

Characteristics of SQL

The following are the important characteristics of SQL.

SQL is extremely flexible.
SQL uses a free form syntax that gives the user the ability to structure SQL statements in a way
best suited.

3. It is a free formated language, i.e., there is no need to start SQL statements in a particular
column or to be finished in a single line.
4. It has relatively few commands.
5. Itis a non-procedural language.
Advantages of SQL

The advantages of SQL are as follows:

1.

SQL is a high level language that provides a greater degree of abstraction than procedural
languages. The programmer has to specify what data is needed but need not to specify, how to
retrieve it.

SQL is a unified language. The same language can be used to define data structures, querying
data, control access to the data, insert, delete and modify occurrences of the data and so on.

All the programs written in SQL are portable, thus they can be moved from one database to
another with very little modification. Such porting could be required when DBMS needs to be
upgraded or changed.

The language is simple and easy to learn. It can handle complex situations very efficiently.

The language has sound theoretical base and there is no ambiguity about the way a query will
interpret the data and produce the results. Thus the results to be expected are well defined.

SQL processes sets-of-records rather than just one record-at-a time. This set-at-a time feature of
the SQL makes it more powerful.

SQL as a language is independent of the way it is implemented internally. This is because SQL
specifies what is required and not how it should be done.

SQL enables its users to deal with a number of database management systems where it is
available.

What do you mean by Embedded and Dynamic SQL?

Embedded SQL defines the way the SQL statements can be embedded within general purpose
programming languages like C, C++, Cobol, Pascal etc. The language in which SQL queries are
embedded is referred to as a host language. The SQL queries embedded in the host language
constitute embedded SQL.

Dynamic SQL allows programs to construct and submit SQL queries at run time.

Consider the following two relations:

-49-

Emp I:Emp|oyee}

Data Manipulation in SQL

SQL has one basic statement for retrieving information from the database: The SELECT statement. SQL
also provides Three other DML statements to modify the database. These statements are: update,

delete and insert.

Select Statement

Select statement is used to retrieve information from table.

Syntax : select < column list > from < table name >.

Example : To display all department ID and the Department name, the query is

select DID, DName from Dept ;

Output:

Example : To select all columns use

DID DMame
10 Accounts
20 Sales
30 Research
40 Deueﬁcping

select * from Dept;

“uxn

-50-

EID Name Salary Hire-date Job DID MID
701 Deepak 8000 5-Jan-2001 Analyst 30 707
702 Maresh 9000 10-Jan-2001 Manager 10 707
703 Sumesh 7000 5-Feb-2001 Salesman 20 705
704 Aditya 9000 27-Nowv-2003 Analyst 30 707
705 Lalit 6500 8-0ct-2002 Manager 20 707
706 Amit 4-Nov-2004 Clerk 10 702
707 Vishal 9500 1-Jan-2001 Manager 30
708 Sumit 8000 6-Jan-2006 Accountant 10 702
Dept (Department)
DID DMame Loc MID
10 Accounts Bangalore 702
20 Sales Delhi 705
30 Research Pune 707
40 DeveEo;:ri ng H}fderabad

Output:

DID DName Loc Manager-ID
10 Accounts Bangalore 702

20 Sales Delhi 705

30 Research Pune 707

40 Developing Hyderabad

Column Alias : You can give name to columns of your choice by using keyword “As” (gives column name

o n

in upper-case letter) or by using “” (gives column name as specified in query).

Example : select DID As Department_ID, DName from Dept ;

Output:
Department-1D DMName
10 Accounts
20 Sales
30 Research
A0 Developing

Eliminating Duplicate Rows : To eliminate duplicate rows, the keyword ‘DISTINCT’ is used.
Example : i) select salary from Emp;

ii) select DISTINCT salary from Emp;

Output: - :

Salary Salary
8000 8000
9000 9000
7000 7000
3000 6500
6500 9500
9500
8000

(i) (ii)

Arithmetic Operators and NULL Values : SQL provides arithmetic operators to perform calculations.
Arithmetic operators with their precedence are

-51-

Description Operator
Multiply *
Divide /
Add +
Subtract -

A null value is unknown value and it is different from zero. Any arithmetic operation with null value gives
null results.

Example : Suppose you want to see increased salary of each employee by 500.

select EID, salary + 500 “New Salary” from Emp;

Output:

EID MNew 5a!ar_y

701 8500

702 9500

703 7500

704 9500

705 7000

706

707 10000
Where Clause : 708 8500 WHERE clause is used to select
particular rows from table.

Syntax : select <column list> from <table name> where <condition>.
Example : List the name of employees having salary 9000.

select name from emp where salary = 9000;

Output:

MName

Maresh
Aditya

Comparison or relational operators : The relational operators provided by SQL are as follows.

Description Operator
Equal to =
Greater than >

Less than <
Greater that equal to >=

Less than equal to <=

Not equal to <>

Example : List the name of employees having salary not equal to * 9000.
select name from emp where salary <> 9000;

Output:

MName

Deepak
Sumesh
Lalit
Amit
Vishal

Sumit

Special operators : Special operators provided by SQL are as follows :

Description Operator

Checking the value within a set IN
Checking the value within a range | BETWEEN
Matching the pattern of characters | LIKE
Checking the null value IS NULL

Example: List the EID and names of employees who were hired by company from 5-Feb—2001 to 1-Jan—
2006.

SELECT EID, Name FROM Emp WHERE Hire_Date in (5-Feb-2001, 1-Jan-2006);

Output:
EID Name
703 Sumesh
704 Aditya
705 Lalic
706 Amit

Example: List the EID and names of employees having MID equal to null.
select EID, name from Emp where MID IS NULL;

Output:

EID Mame

707 Vishal

Two symbols with LIKE operator can be used:
(j) % — It represents any sequence of zero or more characters.
(ii) _ (underscore) — It represents any single character.
Example: List the names of employees ending with ‘it’.

select name from Emp where name LIKE ‘% it’;

Output:

MName
Lalic
Armit

Sumit

Example: List the names of employees having second alphabet of their names is ‘a’.

select name from Emp where name LIKE *_ a %’;

Output:

MName

Maresh
Lalit

Logical operators: Logical operators are used to combine two conditions. Following are the logical
operators provided by SQL.

Description Operator
It returns true if both conditions | AND

are true

It returns true if either condition | OR

is true

It returns true if condition is | NOT
true

Example: List name of employees having salary less than * 8500 and MID is 707.

select name from Emp where salary <= 8500 AND MID = 707;

-54-

Output:

Deepalr_
Lalit

Order by Clause : Order by clause is used to sort rows in both ascending and descending order.

1. ASC:To sort rows in ascending order (By default).
2. DESC: To sort rows in descending order.

Syntax : select <column list> from <table name> where <condition> order by <column list> <ASC/DESC>;
Example: List name of employees in ascending order.

select name from Emp order by name ;

Output:

MName

Aditya
Amit
Deepak
Lalit
MNaresh
Sumesh
Sumit

Vishal

Functions in SQL
Functions are used to manipulate data but these are more powerful than simple queries.
Types of Functions:
1. Single row functions
2. Group functions.
Single row functions are further divided into:
1. Character Functions
2. Arithmetic Functions
3. Date Functions

4. Conversion Functions

-55-

5. General Functions.

Dual table : Dual table is used to explain single row functions. It has one column name Dummy and one

row having value x.

Function

Description

LENGTH('string’)

It returns the number of characters in string.

LOWER(‘string’)

It converts string to lowercase.

UPPER(‘string’)

It converts string to uppercase.

INITCAP(‘string’)

It converts only first character of each word in string to uppercase.

CHR(x)

It returns equivalent character value of integer x.

CONCAT(string 1’, ‘string 2’)

It joins both the strings. It is equivalent to concatenation operator.

REPLACE(string’,‘searchstr’,
‘replace str’)

It replaces every occurrence of search str with replace str within
string.

SUBSTR(‘string’, m[, n])

It returns a substring starting from mth position and upto n'
position.

INSTR(‘string’, ‘char’)

It returns position of first occurrence of char in string.

LPAD('string’, n, ‘char’)

It left justified the string and fill remaining positions with char to a
total width of n.

RPAD(‘string’, n, ‘char’)

It right justified the string and fill remaining positions with char to
a total width of n.

LTRIM(‘char’ FROM ‘string’)

It trims leading char from string.

RTRIM(‘char’ FROM ‘string’)

It trims trailing char from string.

Example : select LENGTH(Vivek’) “Output” from dual;

select REPLACE(‘Amit and Sumit’,

Output
5

it’, zi’) “Output” from dual;

Output
Azi and Suzi

select RPAD (name, 10, '*’) “Emp_name”, LENGTH (JOB) from Emp;

Emp_name

Length (JOB)

EENE Deepak

¥%%%Naresh

*¥E2EGumesh

****Aditya

#* *'E'E*La“r

b T e R I < I Y I B

HEEEREN 0

L

¥ €% *Vishal 7

ERREXSumit 10

Number Functions : Number functions are also known as arithmetic functions. They accept numeric data
and returns numeric values.

Function Description
CEIL(x) It returns the smallest integer greater than or equal to =
FLOOR(x) It returns the largest integer less than or equal to x
ABS5(x) It returns the absolute value of x.
Power(x, y) It returns x raised to the power y.
Med(x,) It returns the remainder of x divided by y.
SIGN(x) It returns +1 if x is pesitive or -1 if x is negative.
ROUND(x, y) It rounds the column. y specify the number of digits after

decimal. If y is omitted then there are no decimal places. If y is
negarive, numbers to the left of the decimal peint are rounded.

Exp(x) It returns e raised to the power x
SQRT(x) It returns square reot of x. If x is negative NULL is returned.
TRUNC(x, y) It truncates the celumn. y specify the number of digits after

decimal. |Fy is omitted then there are no decimal p|aces_ |I:y

is negartive, numbers to the left of the decimal point are truncated.

Example: select CEIL(77.7) from dual;

CEIL(77.7)
78

select FLOOR(69.2) “Output” from dual;

Output
69

-57-

select ABS(—19) “Output” from dual;

Output
19
select SIGN(—9), SIGN(8) from dual;
Output Output
-1 +1

Date Functions : Date functions accept Date data type input and returns Date data type except
MONTHS_BETWEEN function. By default, date format in oracle is DD-MON-RR (12-Nov-81).

Date Functions
Function Description

SYSDATE It retumns the system date.

MNEXT_DAY('date’, ‘day’) It retumns the date of next specified day of the week after
the ‘date’.

LAST_DAY{ date’) It returns the date of last day of the month.

ADD_MONTHS('date’, n) Add n menths to ‘date’.

MONTHS_BETWEEN It returns the number of months between ‘date 1’

(‘date 1, ‘date 27) and ‘date 2°.

ROUND(d, [, format]) It returns date rounded to the specified format. Default
formar is ‘DD’

TRUNC(d [, format]) It returns date truncated to the specified format. Default
format is ‘DD

Example : select SYSDATE from dual;

SYSDATE
21-FEB-19

Conversion Functions : Conversion functions are used to convert one data type into other data type.

-58 -

Function Description

TO_CHAR('date’, 'f") It converts ‘date’ into character format ‘f.

TO_DATE('char’, F) It converts string (‘char’ in date format) into date format *f

Example: select TO_CHAR(‘15-Nov-1988’, ‘MIONTH’) from Dual;

TO_CHAR

NOVEMBER

select TO_DATE(‘DECEMBER’, ‘MM’) from dual;

TO_DATE
12

General Functions : General functions can accept any data type as input and pertain to the use of NULL

values.
Function Description

USER It returns the name of the current user.

NVL{expr 1, expr 2) It converts MULL value given by expr 1 to value given
by expr 2

NVL2{expr 1, expr 2, expr 3) It returmns expr 2 if expr 1 is NULL otherwise it returns
expr 3

uiD It returns the integer value which uniquely identify the
oracle user.

NULLIF(expr 1, expr 2) It compares expr 1, expr 2 and returns NULL if they are
equal otherwise it returns expr 1.

COALESCE(expr 1, expr 2 __, It returns first non-null expression.

expr N)

Example: select USER from dual;

USER
SCOTT

-59.-

Joining of Tables

If we need information from more than one table then we use joins. To join tables the condition need to
be specified.

Cartesian Product : In Cartesian product there is no join condition. It returns all possible combinations of

rows.
Example: select EID, LOC from Emp, Dept; D LoC

701 Banga'ore

701 Delhi 8 % 4 = 32 row
Syntax of Join: The following is the common £08 Hyderabadd

syntax for all types of JOIN.

select table 1.columns, table 2.columns from table 1, table 2
where table 1.column N = table 2.column M;

Equijoin : When two or more tables are joined by equality of values in one or more columns then it is
called Equijoin. More than two tables can be joined by using logical operators.

Example: Display EID and DName of all employees by joining over DID.
select Emp.EID, Dept.DName from Emp, Dept where Emp.DID = Dept.DID

Output:

EID DMame
701 Research
702 Accounts
703 Sales

704 Research
705 Sales

706 Accounts
707 Research
708 Accounts

Outer Join : The outer join operator is ‘(+)’. During simple joining some rows are missing due to null
value. To display these rows use outer join operator towards deficient side.

-60 -

Example: Display EID and DName of employees by joining over MID.

SELECT e.EID, d.DName SELECT e.EID, d.DName SELECT e.EID, d.DName

FROM Emp e, Dept d
WHERE e MID = d.MID; WHERE eMID (+) = d.MID; WHERE e.MID = d.MID (+);

FROM Emp e, Dept d FROM Emp e, Dept d

EID DMame EID DMame EID DName

701 Research 701 Research 01 Research

702 Accounts 702 Accounts 702 Accounts

703 Sales 703 Sales 703 Sales

704 Research 704 Research 704 Research

705 Sales 705 Sales 705 Sales

706 Accounts 706 Accounts 706 Accounts

708 Accounts 707 708 Accounts
708 Accounts Developing

Self Join : A table can be joined to itself by using self joins.

Example: Display the name of employees and name of their managers.

select e.Name “Employee”, m.Name “Manager” from Emp e, Emp m where e.MID = m.MID;

Output:

Employee Manager
Deepak Vighal
MNaresh Vishal
Sumash Lalit
Aditya Vishal
Lalic Vishal
Amit Maresh
Sumit Maresh

-61-

Group Functions

Group functions are those functions that operate on a group of rows and returns a single result per
group. Group may be entire table or a part of table. All the group functions ignore null values.

Function Descripti.un

MAX(column name) It retuns the maximum value of a given attnbute,
ignoring NULL values.

MIN(column name) It returns the minimum value of a given ateribute,

ignoring NULL values.

AVG([DISTINCT/ALL] It returns the average value of column values, ignering
column name) MNULL walues.
STDDEV([DISTINCT/ALL] It returns the standard dewviation of column values,
column name) ignoring NULL values.
Sum([DISTINCT/ALL)] It returns the sum of column values, ignering NULL values.
column name)
| COUNT(*|[DISTINCT]|ALL| | It retuns the total number of rows. |
column name)
VARIANCE([DISTINCT/ALL] It returns the statistical variance, ignening NULL values.
column name)
Example:
SELECT AVG(Salary), AVG(DISTINCT Salary)
FROM mp;
AVG(Salary) AVG(DISTINCT Salary)
81428 5714.2

Group by Clause : The GROUP BY clause is used to divide table into groups. A group may contain whole
of the table or a collection of rows.

Syntax : select <column name> from <table name> where <condition> GROUP BY <column name>;
Column alias cannot be used with group by clause.

Example 44 : Display job and average salary paid by company for a particular job.

select Job, AVG(salary) from emp Group By Job;

Output:

-62-

Job AVG(Salary)
Accountant 8000
Ana|y5t 8500
Manager 833333
Salesman 7000

Rows are sorted by ascending order according to the column specified in GROUP BY clause (By default).
To display rows in order according to the user, ORDER BY clause can be used.

HAVING Clause : The HAVING clause to apply restrictions on group. Like Where clause is used to restrict
single rows, Having clause is used to restrict group, (collection ofrows).

Syntax : select <column name> from <table name> where <condition> Group By <column name> Having

<group condition>

Example 45 : Display job and average salary paid by company for a particular job in descending order
according to their average salary and average salary must be greater than 7500.

select Job, AVG(Salary) from Emp Group by Job Having AVG(Salary) > 7500 Order By AVG(Salary) DESC;

Output:

Job AVG(Salary)
Ana |}r5t 8500
Manager 833333
Accountant 8000

Insert Statement

Insert statement is used to insert or add new rows in table.

Syntax : INSERT INTO <table name> (column 1, column 2,

value n);

o Only asingle row is inserted at a time

o Name of columns can be given in any order.

Example: Insert new rows in Dept. table.

Insert INTO Dept (DID, DName, Loc, MID) VALUES (10; ‘Accounts’; ‘Bangalore’, 708);

-63-

Update Statement
Update statement is used to modify the values of existing rows.

Syntax : UPDATE <table name> SET <(column 1 = value 1), (column 2 = value 2),......, (column n = value
n)> WHERE <condition>;

e All rows in the table satisfies the condition are updated.
Example: Update the MID of DName Accounts to 702
UPDATE Dept SET MID = 702 WHERE DName = ‘Accounts’;
Delete Statement
Delete statement is used to remove existing rows from table.
Syntax : DELETE FROM <table name> WHERE <condition>;
Example: Delete row from Dept having DName = Testing
DELETE FROM DeptWHERE DName = ‘Testing’;
Data Definition Language (DDL)

SQL DDL commands are used to create, modify or remove database structures including tables. These
commands have an immediate effect on the database, and also record information in the data
dictionary. The following examples show working of some of the DDL commands.

Create Table
Create table statement is used to create new tables in database.

Column Constraints : Constraints are rules which are forced on database to follow them for consistency

purpose.
Constraint Description
Mot Mull By using this constraint, null value to a particular

attribute cannot be assigned.

Unique Each value of an attribute must be unique
Primary Key Value at each column must be unique and Mot MNull
Foreign Key Particular attribute must follow referential integrity.
Check Specified condition must be true for attnbute

-64 -

Example: Create a table, Dept, with attributes DID, DName, Loc and MID. DName must be unique.

CREATE TABLE Dept (DID Number(4), DName Varchar2(20),

Constraint dname-unique UNIQUE Loc Varchar2(20), MID Number(4));

or

CREATE TABLE Dept(DID Number(4), DName Varchar2(20), Loc Varchar2(20),
MID Number(4), CONSTRAINT dname_unique UNIQUE (DName));

Alter Table Statement

Alter table statement is used to add or drop a constraint. It can also be used to disable or enable any
constraint. Alter table statement is also used to add or drop columns of tables and to modify name and
attributes of an existing column.

Syntax:

(/) To add a constraint: ALTER Table <table name> ADD CONSTRAINT <condition>;

(if) To drop a constraint: ALTER Table <table name> DROP CONSTRAINT <constraint name> CASCADE
CONSTRAINTS;

(iii) To enable a constraint: ALTER Table <table name> ENABLE CONSTRAINT <constraint name>;

(iv) To disable a constraint: ALTER Table <table name> DISABLE CONSTRAINT <constraint name>
CASCADE;

(v) To add new column: ALTER TABLE <table name> ADD (<column name> <data type(size)>);

(vi) To drop a column: ALTER TABLE <table name> DROP COLUMN <column name>;

(vii) To modify a column: ALTER TABLE <table name> MODIFY (<column name> <new data type |new
size| new default value>);

Describe Statement

It describes the structure of table.

Syntax : DESCRIBE <table name>;

Example 61 : Describe the structure of table Emp.

DESCRIBE Emp;
Output:
Name NULL Type

EID NOT NULL NUMBER(4)
NAME VARCHAR2(30)
SALARY NUMBER(6)
HIRE-DATE NOT NULL DATE
JOB VARCHAR2(20)
DID NUMBER(4)
MID NUMBER({4)

Drop Statement

Drop table statement is used to remove table from database.

-65-

Syntax : DROP TABLE <table name>;

Example: Remove table student (Example-62) from database.
DROP TABLE Student;

Data Control Language (DCL)

Data Control Language(DCL) is used to control privileges in Database. To perform any operation in the
database, such as for creating tables, sequences or views, a user needs privileges.

In DCL we have two commands,
e GRANT: Used to provide any user access privileges or other priviliges for the database.

e REVOKE: Used to take back permissions from any user.

Grant: Grant statement is used to give different permissions on different portions of database to
different users. In a multi-user database management system, it is required to grant different
permissions for security purposes.

Syntax : GRANT <privilege-list>| ALL ON <object> TO <user-list>| PUBLIC [WITH GRANT OPTION]
Ex.: Grant all the permissions on table Emp to all users
GRANT ALL ON Emp TO PUBLIC;

Ex.: Grant ALTER authority on table Emp to user Nick with the capability to grant those authorities to
other users.

GRANT ALTER ON Emp TO Nick WITH GRANT OPTION;
REVOKE: REVOKE statement is used to take away any authority from a user that was granted earlier.

Syntax : REVOKE <privilege-list>| ALL ON <table name> [(column-comma-list)] FROM <user-list>|
PUBLIC

Ex.: REVOKE the UPDATE permission on table Dept from Rohan.

REVOKE U PDATE ON Dept FROM Rohn;

Ex.: REVOKE INSERT and UPDATE permission on Name and EID columns of table Emp from all users.
REVOKE INSERT, U PDATE (Name, EID) ON Emp FROM PUBLIC;

Transaction Control Language (TCL)

-66 -

Transaction Control Language can be defined as the portion of a database language used for maintaining
consistency of the database and managing transactions in database.

There are three commands that come under the TCL: COMMIT, ROLLBACK, SAVEPOINT

Commit: A transaction is completed successfully after commit. Commit statement is used to make data
changes permanent to database.

Syntax : COMMIT;

Rollback: Rollback statement is used to terminate current transaction and discarding all data changes
pending due to that transaction.

Syntax : ROLLBACK;
Savepoint: It is used to partially commit the current transaction and put a savepoint at that position.
Syntax : SAVEPOINT <name>;

If second savepoint will be created within same transaction then earlier savepoint is automatically
discarded by database.

Define transaction. What are the properties of a transaction?

Explain with the help of an example. Ans: A collection of operations that form a single logical unit of
work is called a transaction. The operations that make up a transaction typically consist of requests to
access existing data, modify existing data, add new data or any combination of these requests. The
statements of a transaction are enclosed within the begin transaction and end transaction statements.
To ensure the integrity of the data, the database system must maintain some desirable properties of the
transaction. These properties are known as

ACID properties, the acronym derived from the first letter of the terms atomicity, consistency, isolation
and durability.

e Atomicity implies that either all of the operations that make up a transaction should
execute or none of them should occur.

e Consistency implies that if all the operations of a transaction are executed completely,
the database is transformed from one consistent state to another.

e Isolation implies that each transaction appears to run in isolation with other
concurrently running transactions.

e Durability (also known as permanence) implies that once a transaction is completed
successfully, the changes made by the transaction persist in the database, even if the
system fails.

-67-

Explain state transition diagram. Explain, when a transaction is said to be failed.

State transition diagram is a diagram that describes how a transaction passes through various states
during its execution. Whenever a transaction is submitted to a DBMS for execution, either it executes
successfully or fails due to some reasons. During its execution, a transaction passes through various
states that are active, partially committed, committed, failed and aborted as shown in Figure.

read, write
operation

BEGIN_

END COMMIT
TRANSACTION b e

TRANSACTION PARTIALLY TRANSACTION

FAILED TERMINATELD

Figure: State Transition Diagram Showing Various States of a Transaction

A transaction enters into the active state with its commencement. At this point, the system marks
BEGIN_TRANSACTION operation to specify the beginning of the transaction execution. During its
execution, the transaction stays in the active state and executes several READ and WRITE operations on
the database. The READ operation transfers a data item from the database to a local buffer of the
transaction that has executed the read operation. The WRITE operation transfers the data item from the
local buffer of the transaction back to the database.

Once the transaction executes its final operation, the system marks END_TRANSACTION operation to
specify the end of the transaction execution. At this point, the transaction enters into the partially
committed state. The actual output at this point may still be residing in the main memory and, thus, any
kind of hardware failure might prevent its successful completion. In such a case, the transaction may
have to be aborted.

Before actually updating the database on the disk, the system first writes the details of updates
performed by the transaction in the log file. The log file is then written to the disk so that, even in case
of failure, the system can re-construct the updates performed by the transaction when the system
restarts after the failure. When this information is successfully written out in the log file, the system

-68 -

marks COMMIT_TRANSACTION operation to indicate the successful end of the transaction. Now, the
transaction is said to be committed and all its changes must be reflected permanently in the database.

If the transaction is aborted during its active state or the system fails to write the changes in the log file,
the transaction enters the failed state. The failed transaction must be rolled back to undo its effects on
the database to maintain the consistency of the database. When the transaction leaves the system, it
enters into the terminated state. At this point, the transaction information maintained in the log file
during its execution is removed.

Define serial schedule. Why is it always considered to be correct?

Serial schedule is a schedule consisting of a sequence of instructions from various transactions, where
the operations of one single transaction appear together in that schedule. Each transaction in a serial
schedule is executed independently without any interference from the operations of other transactions.
As long as every transaction is executed from beginning to end without any interference from other
transactions, it gives a correct end result on the database. Therefore, every serial schedule is considered
to be correct. Hence, for a set of n transactions, n! different valid serial schedules are possible. The serial
schedule of transactions T1 and T5 in the order T5 followed by T1 is shown in Figure.

C T.
read(B)
B:= B — 5
vrite (B)
read (C)
c:= C + 50
wvrite (C)

yrite (&)
read(B)

Figure: Serial Schedule in the Order T5 Followed by T1

Explain serializable schedule by giving an example.

The consistency of the database under concurrent execution can be ensured by interleaving the
operations of transactions in such a way that the final output is the same as that of some serial schedule
of those transactions. Such a schedule is referred to as serializable schedule. Thus, a schedule S of n
transactions T1, T2, T3, ..., Tn is serializable if it is equivalent to some serial schedule of the same n
transactions.

-69 -

Following figure shows a non-serial schedule of transactions T1 and T5, which is equivalent to serial
schedule shown in previous figure. After the execution of this schedule, the final values of accounts A, B
and C are $1900, $1550 and $550. Thus, the sum A + B + C is preserved and, hence, it is a serializable
schedule.

T, I

read (&)

A:=R - 1C

write (R)
read (B)
B:= B - 50
write (B)

read (B)

B:=B + 10

write (B)
read(C)
Ti=C + 5
write (C)

Figure: Serializable Schedule

What are result equivalent schedules? Explain with example.

Two different schedules may produce the same final state of the database. Such schedules are known as
result equivalent, since they have the same effect on the database. However, in some cases, two
different schedules may accidentally produce the same final state of database. For example, consider
two schedules Si and Sj that are updating the data item Q, as shown in the following Figure. Suppose
that the value of data item Q is $100 then the final state of database produced by schedules Si and Sj is
the same, that is, they produce the same value of Q ($200).

Figure: Result Equivalent Schedules

-70-

Discuss the two different forms of schedule equivalence.

Two different forms of schedule equivalence are conflict equivalence and view equivalence that lead to
the notions of conflict serializability and view serializability.

Conflict equivalence and conflict serializability: Two operations in a schedule are said to conflict if they
belong to different transactions, access the same data item, and at least one of them is the write
operation. On the other hand, two operations belonging to different transactions in a schedule do not
conflict if both of them are read operations or both of them are accessing different data items. To
understand the concept of conflicting operations in a schedule, consider two transactions T6 and T7 that
are updating the data items Q and R in the database. A non-serial schedule of these transactions is
shown in Figure below.

T, g 8
read (Q)
write (Q)
read (Q)
write (Q)
read (R)
write (R)
read(R)
write (R)

Figure: Non-serial Schedule Showing Conflicting Operations

In the above Figure, the write(Q)operation of T6 conflicts with the read(Q)operation of T7 because both
the operations are accessing the same data item Q, and one of these operation is the write operation.
On the other hand, the write(Q)operation of T7 is not conflicting with the read(R)operation of T6,
because both are accessing different data items Q and R.

If a schedule S can be transformed into a schedule S’ by performing a series of swaps of non-conflicting
operations, then S and S’ are conflict equivalents. Note that while swapping the order of execution of
two conflicting operations cannot be changed because if they are applied in different order, they can
have different effect on the database or on the other transactions in the schedule. Thus, two schedules
are said to be conflict equivalent if the order of any two conflicting operations is same in both the
schedules. A schedule, which is conflict equivalent to some serial schedule, is known as conflict
serializable.

-71-

View equivalence and view serializability: Two schedules S and S’ are said to be view equivalent if the
schedules satisfy these conditions.

e The same set of transactions participates in S and S’, and S and S’ include the same set of
operations of those transactions.

e If the transaction Ti reads the initial value of a data item say Q in schedule S, then Ti must read
the initial value of same data item Q in schedule S’ also.

e For each data item Q, if Ti executes read(Q) operation after the write(Q) operation of
transaction Tj in schedule S, then Ti must execute the read(Q) operation after the write(Q)
operation of Tj in schedule S' also.

e If the transaction Ti performs the final write operation on any data item say Q in schedule S,
then it must perform final write operation on the same data item Q in schedule S’ also.

A schedule S is said to be view serializable if it is view equivalent to some serial schedule.
What is concurrency control? How is it implemented?

When several transactions execute concurrently, they may result in interleaved operations, and the
isolation property of transaction may no longer be preserved. Thus, it may leave the database in an
inconsistent state. To understand, consider a situation in which two transactions concurrently access the
same data item. One transaction modifies a tuple, and the other makes a decision on the basis of that
modification. Now, suppose that the first transaction rolls back. At this point, the decision of the second
transaction becomes invalid. Thus, there is a need to control the interaction among concurrent
transactions, which is referred to as concurrency control.

The concurrency control is implemented with the help of concurrency control techniques, which ensure
that the concurrent transactions maintain the integrity of a database by avoiding the interference
among them and further ensure serializability order in the schedule of transactions. The various
concurrency control techniques are locking, timestamp-based, optimistic and the multiversion
technique.

Define lock. What are the two modes of locking?

A lock is a variable associated with each data item that indicates whether a read or write operation can
be applied to the data item. In addition, it synchronizes the concurrent access of the data item.
Acquiring the lock by modifying its value is called locking. It controls the concurrent access and
manipulation of the locked data item by other transactions and, hence, maintains the consistency and
integrity of the database. Database systems mainly use two modes of locking, namely, exclusive locks
and shared locks.

Exclusive lock (denoted by X) is the commonly used locking strategy that provides a transaction an
exclusive control on the data item. A transaction that wants to read as well as write a data item must
acquire an exclusive lock on the data item. Hence, an exclusive lock is also known as the update lock or
write lock. If a transaction (say, Ti) has acquired an exclusive lock on a data item (say, Q), no other
transaction is allowed to access Q until Ti releases its lock on Q.

-72 -

Shared lock (denoted by S) can be acquired on a data item when a transaction wants to only read a data
item and not modify it. Hence, it is also known as read lock. If a transaction Ti has acquired a shared lock
on data item Q, Ti can read but cannot write on Q. In addition, any number of transactions can acquire
shared locks on Q simultaneously. However, no transaction can acquire an exclusive lock on Q.

What do you mean by query processing? What are the various steps involved in query processing?
Explain with the help of a block diagram.

Query processing includes translation of high-level queries into low-level expressions that can be used at
the physical level of the file system, query optimization and actual execution of the query to get the
result. It is a three-step process that consists of parsing and translation, optimization and execution of
the query submitted by the user. These steps are discussed below:

Query in high-level
language

|

Parser and
translator

Internal representation

of the query
9

Query optimizer -

Execution plan

1

DBMS catalog

Query Evaluation
engine

Result of the query
Data

Figure: Query-processing Steps

e Parsing and translation: Whenever a user submits a query in high-level language (such as SQL)
for execution, it is first translated into its internal representation suitable to the system. The
internal representation of the query is based on the extended relational algebra. Thus, an SQL
query is first translated into an equivalent extended relational algebra expression. During
translation, the parser checks the syntax of the user’s query according to the rules of the query
language. It also verifies that all the attributes and relation names specified in the query are the
valid names in the schema of the database being queried.

-73-

e Optimization: Generally, there are several possible ways of executing a query (known as
execution strategies), and different execution strategies can have different costs. It is the
responsibility of the query optimizer, a component of DBMS, to choose a least costly execution
strategy. This process of choosing a suitable execution strategy for processing a query is knows
as query optimization. The metadata stored in the special tables called DBMS catalog is used to
find the best way of evaluating a query.

e Execution: The chosen execution strategy is finally submitted to the query-evaluation engine for
actual execution of the query to get the desired result.

Define recovery manager. What are the properties of transactions that it preserves?

The component of DBMS that is responsible for performing the recovery operations is called recovery
manager. The main aim of recovery is to restore the database to the most recent consistent state. The
recovery manager ensures that the two important properties of transactions namely, atomicity and
durability are preserved. It preserves atomicity by undoing actions of uncommitted transactions and
durability by ensuring that all the actions of committed transactions survive any type of failure.

-74 -

